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Reflection Analysis of PML ABC’s

for Low-Frequency Applications
Jan De Moerloose, A4ember, IEEE, and Maria A. Stuchly, Fellow, IEEE

Abstract—A basic numerical reflection analysis is presented for
low-frequency applications using a new type of the reflectivity
diagram. The retardation effect at low frequencies is explained
and use of an exponential profile, as suggested.

I. INTRODUCTION

B ERENGER’S perfectly matched layer (PML) technique

[1] is superior to most standard absorbing boundary

conditions (ABC’s) by orders of magnitude [1], [2]. Its per-

formance has been adequately explained from an analytical

standpoint [1], [3], but a more detailed analysis is necessary of

a numerical grid reflection. A substantial numerical reflection

occurs in the evanescent wave region, especially in the low-

frequency region [4]. In this letter, we show that this numerical

reflection strongly depends on the conductivity profile. High

reflectivity levels in the low-frequency region are mentioned

in [4] as a probable cause of problems for low-frequency

simulations. Here, we show that the propagation speed within

the PML gets progressively lower with decreasing frequency,

which leads to a retardation effect. For an exponential profile,

the retardation time is inversely proportional to frequency. This

property makes this profile extremely useful for low-frequency

applications.

II. COMPARISON OF PML PROFILES

BY THE REFLECTIVITY DIAGRAM

The plane wave reflectivity rP of an absorbing boundary can

generally be obtained by dividing the complex amplitude of

the reflected field R by the complex amplitude of the incident

field I

R(w> ky)
rp(w, kg) = /rPl exp(j’p) =

1(w kg) “
(1)

For two-dimensional problems and an absorbing boundary

parallel to the y-axis, rP depends on the radial frequency w and
the transverse wavenumber ,kV,whose value is a function of the

angle of incidence. For an infinite plane and most absorbing

boundary conditions, rp can be calculated analytically. For

PML, a multiple transmission line technique is recommended

(see e.g., [4] and [5]). Since rP depends on both w and ky,

a complete picture of the reflective behavior is given by a

color-coded graph of [rP I with w on the x axis and kY on the
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Fig. 1. Reflectivity diagram for a PML(4, F’, 1)
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(w/c > ky) correspond to propagating waves and all points

above the diagonal (w/c < ky ) correspond to evanescent

waves. The diagonal (w/c = ky ) represents waves at the

grazing incidence or cutoff. All points that correspond to a

propagating wave at a fixed angle of incidence are situated on

a straight line intersecting the origin.

Figs. 1 and 2 show the reflectivity diagram of a

PML(15, P, 1) and a PML(4, P, 1), respectively. Note

that the first number in the brackets after PML denotes the

number of layers, the second symbol the conductivity profile

(P = parabolic), and the third the reflection coefficient at

normal incidence in percent. The reflectivity coefficients are

computed at a distance of 15 cells (6 = 6% = by = 0.06

m) from the outer boundary (an electric wall) in both cases.

This means that the natural damping of the evanescent waves

is the same in both cases, i.e., we prefer to 100-k at the

PML(4, P, 1) as a It$-cell layer with a different conductivity

profile than the PML(15, P, 1), For a continuous space, the

reflection coefficient of a PML lay(sr is determined by its

width for evanescent waves and by the normal reflection

coefficient for propagating waves [1], [4]. Therefore, from a
purely analytical viewpoint, both PiV[L layers should behave

identically. This is to a large degree correct in the propagating

region but not in the evanescent region (see Figs. 1 and 2).

Although the behavior around the cutoff region is very similar,

the low-frequency and the intermediate regions are clearly
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Fig. 2. Reflectivity diagram for a PML( 15, P, 1) (color + IrP \, contours
-+ to).

different for the two cases. While there is a slightly stronger

absorption for the intermediate region for the PML(15, P, 1),

the opposite is true for very low frequencies. In fact, the

reflectivity tends to one in the static case for all transverse

wavelengths, in accordance with [4]. This behavior is rather

worrying, as it could possibly inhibit the use of PML in

low-frequency modeling.

III. RETARDED REFLECTIONS AND THE EXPONENTIAL PROFILE

A general component of an evanescent plane wave in a PML

medium contains a phase factor exp(j * ) [4]. (kZ is the

imaginary part of the commonly used wavenumber.) The PML

medium can therefore be looked upon as a dispersive medium

with a characteristic group velocity W,q,given by

1 (–)a o.k. r7z k;— ——— =— .
8W Eow ~v=c,~

(2)
Vg EOW2kz

Very low group velocities may occur at low frequencies

(w x O) and near the cutoff region (kz = O). This means that

reflected waves propagate slowly through the PML medium

and appear only after a certain delay, here called the retardation

time. Using (2) to calculate the retardation time is rather

complicated, since the reflections do not always occur at

the end of the layer and (2) is strictly speaking valid for a
continuous medium only. A more practical way to calculate

the retardation time to is from the phase of the reflection

coefficient (1)

()(5@to=– ~ .
k, =Cst

(3)

Numerically computed retardation times are superimposed

in Figs. 1 and 2, as a contour plot. The contours are labeled by

the number of timesteps $t= 6/(2c). The retardation times are

much larger for the PML( 15, P, 1) and effectively window out

high amplitude reflections in the low-frequency region. Results

in Figs. 1 and 2 are analytical, but they take into account

the numerical dispersion of the grid. The entirely numerical

“o 5 10 15 dB
omega[GHz]

Fig. 3, Reflectivity diagram for a PML( 15, exponential; A = 0.9102,1)
(color + lrP I, contours + to).

calculations performed but not cited here indeed confirm that

the reflections increase with increasing simulation time. We

also notice that for a pambolic profile, thle retardation time is

dependent on frequency as well as transverse wavelength. This

makes it very difficult to determine the retardation time for an

actual problem since usually there is no information available

on the transverse wavelength.

For the exponential profile, retardation times will be shown

to depend on frequency only. Starting with the fact that

numerical reflections at low frequency occur [4] when

(7. k. 6
—=7T (4)

EoW

and assuming o. to be monotonically increasing and condition

(4) to be fulfilled after the wave has traveled over a distance

x, the retardation time is given by

‘O=21%=21Z%Y’X’“)
To obtain the last approximation in (5), (2) and lcz % I%y

were used for low frequencies. This expression is dependent

only on w, after k% is eliminated by substituting (4)

(6)

The above expression is still a function of o.(z) unless

~ ~~ u~(z’)dz’ is a constant A for all z. This condition is
best fulfilled (although not exactly because of the lower limit

of the integral) by an exponential profile

0 ~ = Be’IA. (7)

Our theory is illustrated in Fig. 3 showing the reflectivity

diagram for a 15-cell exponential profile with 6 = 1 mm and
A = l/in(3) = 0.9102. The retardation time is obviously

to a large degree independent of the transverse wavelength,

as predicted. As shown on the logarithmic plot in Fig. 4, its

value is very close to to = ~, given by (6). This proves
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Fig.4. Retadation time versus frequency for exponential profile.

that our explanation of the basic reflection mechanism at low

frequencies is correct. The choice of A is somewhat arbitrary.

The magnitude of the reflection coefficient depends on l?, but

to a lesser extent for evanescent waves than for propagating

waves. It is also not of importance as long as the reflections

are filtered out by sufficiently short simulation tissues. The

retardation mechanism is a time-domain phenomenon, which

explains why PML is less effective in frequency-domain

methods such as FEM (finite-element modeling).

IV. CONCLUSION

We have presented a new type of reflectivity diagram to

effectively compare PML ABC’s (and other ABC’s) over

the complete frequency range. It was shown that in practical

simulations using FDTD (finite-difference time-domain), the

high reflections for low frequencies in the evanescent wave

region are masked by a retardation mechanism. As a special

case, it was shown that for an exponential profile, retardation

times are dependent only on frequency.
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