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Reflection Analysis of PML ABC’s
tor Low-Frequency Applications

Jan De Moerloose, Member, IEEE, and Maria A. Stuchly, Fellow, IEEE

Abstract—A basic numerical reflection analysis is presented for
low-frequency applications using a new type of the reflectivity
diagram. The retardation effect at low frequencies is explained
and use of an exponential profile, as suggested.

[. INTRODUCTION

ERENGER’S perfectly matched layer (PML) technique

[1} is superior to most standard absorbing boundary
conditions (ABC’s) by orders of magnitude [1], [2]. Its per-
formance has been adequately explained from an analytical
standpoint [1], [3], but a more detailed analysis is necessary of
a numerical grid reflection. A substantial numerical reflection
occurs in the evanescent wave region, esspecially in the low-
frequency region [4]. In this letter, we show that this numerical
reflection strongly depends on the conductivity profile. High
reflectivity levels in the low-frequency region are mentioned
in [4] as a probable cause of problems for low-frequency
simulations. Here, we show that the propagation speed within
the PML gets progressively lower with decreasing frequency,
which leads to a retardation effect. For an exponential profile,
the retardation time is inversely proportional to frequency. This
property makes this profile extremely useful for low-frequency
applications.

II. COMPARISON OF PML PROFILES
BY THE REFLECTIVITY DIAGRAM

The plane wave reflectivity r,, of an absorbing boundary can
generally be obtained by dividing the complex amplitude of
the reflected field R by the complex amplitude of the incident
field I
R{w, ky)
Lw-ky) "

For two-dimensional problems and an absorbing boundary
parallel to the y-axis, r, depends on the radial frequency w and
the transverse wavenumber k,, whose value is a function of the
angle of incidence. For an infinite plane and most absorbing
boundary conditions, r, can be calculated analytically. For
PML, a multiple transmission line technique is recommended
(see e.g., [4] and [3]). Since r, depends on both w and k,,
a complete picture of the reflective behavior is given by a
color-coded graph of |r,| with w on the z axis and k&, on the

rp(w, ky) = |rp|exp(jo) = (D
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Reflectivity diagram for a PML(4, P, 1) (color — |rp|, contours

y axis. In this representation, all points below the diagonal
(w/e > ky) correspond to propagating waves and all points
above the diagonal (w/c < ky) correspond to evanescent
waves. The diagonal (w/c = k,) represents waves at the
grazing incidence or cutoff. All points that correspond to a
propagating wave at a fixed angle of incidence are situated on
a straight line intersecting the origin.

Figs. 1 and 2 show the reflectivity diagram of a
PML(15, P, 1) and a PML(4, P, 1), respectively. Note
that the first number in the brackets after PML denotes the
number of layers, the second symbol the conductivity profile
(P = parabolic), and the third the reflection coefficient at
normal incidence in percent. The reflectivity coefficients are
computed at a distance of 15 cells (6 = dz = 6y = 0.06
m) from the outer boundary (an electric wall) in both cases.
This means that the natural damping of the evanescent waves
is the same in both cases, i.e., we prefer to look at the
PML(4, P, 1) as a 15-cell layer with a different conductivity
profile than the PML(15, P, 1). For a continuous space, the
reflection coefficient of a PML layer is determined by its
width for evanescent waves and by the normal reflection
coefficient for propagating waves [1], [4]. Therefore, from a
purely analytical viewpoint, both PML layers should behave
identically. This is to a large degree correct in the propagating
region but not in the evanescent region (see Figs. 1 and 2).
Although the behavior around the cutoff region is very similar,
the low-frequency and the intermediate regions are clearly
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Fig. 2. Reflectivity diagram for a PML(15, P, 1) (color — |rp|, contours
— 1g).

different for the two cases. While there is a slightly stronger
absorption for the intermediate region for the PML(15, P, 1),
the opposite is true for very low frequencies. In fact, the
reflectivity tends to one in the static case for all transverse
wavelengths, in accordance with [4]. This behavior is rather
worrying, as it could possibly inhibit the use of PML in
low-frequency modeling.

III. RETARDED REFLECTIONS AND THE EXPONENTIAL PROFILE

A general component of an evanescent plane wave in a PML
medium contains a phase factor exp(j %ﬁ:—m-) [4]. (k is the
imaginary part of the commonly used wavenumber.) The PML
medijum can therefore be looked upon as a dispersive medium

with a characteristic group velocity v, given by

O _
vg_ﬂ Ow \ eoqw ky:cst—

Very low group velocities may occur at low frequencies
(w ~ 0) and near the cutoff region (k. = 0). This means that
reflected waves propagate slowly through the PML medium
and appear only after a certain delay, here called the retardation
time. Using (2) to calculate the retardation time is rather
complicated, since the reflections do not always occur at
the end of the layer and (2) is strictly speaking valid for a
continuous medium only. A more practical way to calculate
the retardation time #; is from the phase of the reflection

coefficient (1)
Jy
to = - (——) .
Ow ky=cst

Numerically compuied retardation times are superimposed
in Figs. 1 and 2, as a contour plot. The contours are labeled by
the number of timesteps 8t = §/(2¢). The retardation times are
much larger for the PML.(15, P, 1) and effectively window out
high amplitude reflections in the low-frequency region. Results
in Figs. 1 and 2 are analytical, but they take into account
the numerical dispersion of the grid. The entirely numerical
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Fig. 3. Reflectivity diagram for a PML(15, exponential; 4 = 0.9102,1)
(color — |rp|, contours — o).

calculations performed but not cited here indeed confirm that
the reflections increase with increasing simulation time. We
also notice that for a parabolic profile, the retardation time is
dependent on frequency as well as transverse wavelength. This
makes it very difficult to determine the retardation time for an
actual problem since usually there is no information available
on the transverse wavelength.

For the exponential profile, retardation times will be shown
to depend on frequency only. Starting with the fact that
numerical reflections at low frequency occur [4] when

fo g ) ~ @
EoW
and assuming o, to be monotonically increasing and condition
(4) to be fulfilled after the wave has traveled over a distance
x, the retardation time is given by

T 7.0 x N
dz ~ 2/ (2 )ky g’
0

0 Vg gow?

to =2 ®)
To obtain the last approximation in (5), (2) and ky = ky
were used for low frequencies. This expression is dependent
only on w, after k, is eliminated by substituting (4)
27w 1 e

to ~ oy (z')dz'.

(6)

wbd Tz Jo

The above expression is still a function of o.(x) unless
L[5 o2(2’)dz’ is a constant A for all z. This condition is
best fulfilled (although not exactly because of the lower limit

of the integral) by an exponential profile

o, = Be®/A, @)

Our theory is illustrated in Fig. 3 showing the reflectivity
diagram for a 15-cell exponential profile with 6 = 1 mm and
A = 1/In(3) = 0.9102. The retardation time is obviously
to a large degree independent of the transverse wavelength,
as predicted. As shown on the logarithmic plot in Fig. 4, its
value is very close to tg = 2Z2, given by (6). This proves
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Fig. 4. Retardation time versus frequency for exponential profile.

that our explanation of the basic reflection mechanism at low
frequencies is correct. The choice of A is somewhat arbitrary.
The magnitude of the reflection coefficient depends on B, but
to a lesser extent for evanescent waves than for propagating
waves. It is also not of importance as long as the reflections
are filtered out by sufficiently short simulation tissues. The
retardation mechanism is a time-domain phenomenon, which
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explains why PML is less effective in frequency-domain
methods such as FEM (finite-element modeling).

IV. CONCLUSION

We have presented a new type of reflectivity diagram to
effectively compare PML ABC’s (and other ABC’s) over
the complete frequency range. It was shown that in practical
simulations using FDTD (finite-difference time-domain), the
high reflections for low frequencies in the evanescent wave
region are masked by a retardation mechanism. As a special
case, it was shown that for an exponential profile, retardation
times are dependent only on frequency.
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